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TECHNICAL MEMORANDUM X-53108

CHARACTERISTIC FEATURES OF SOME PERIODIC ORBITS
IN THE RESTRICTED THREE BODY PROBLEM

By

Wilton E. Causey

SUMMARY

Earth-moon orbits are presented which, when referred
to a rotating coordinate system, return periodically to
their original set of state variables. Information con-
cerning the period of the orbit, time spent in the region
between earth and moon, close approach distance to the
moon, and closest approach distance to the earth is given
for various families of periodic orbits. These orbits
have periods of 1 to 4 months, and they have at least one
perpendicular crossing of the earth-moon line on the back
side of the moon.

SECTION I: INTRODUCTION

This report presents earth-moon orbits which, when
referred to a rotating coordinate system, return periodically
to their original set of state variables. Such orbits offer
repeated approaches to both earth and moon and could be used
in instrumented exploration of earth-moon space for meteoroid
concentration and radiation belts.

Information concerning the period of the orbits, time
spent in the region between earth and moon, close approach
distance to the moon, and closest approach distance to the
earth is given for various families of periodic orbits. The
orbits discussed in this paper have periods of 1 ta 4 months,
and they have at least one perpendicular crossing of the
earth-moon line on the back side of the moon. The orbits
contained herein represent only a small portion of the
families of periodic orbits that are possible in the restricted
three pody problem, and it should not be inferred that these
are the only orbits of interest.



SECTION IT: DISCUSSION
A. EXISTENCE

The existence of certain periodic orbits in the restricted
three body problem has been known for a long time. Poincare’
referred to orbits which reduce to circles when the disturbance
from the more distant body becomes zero as "Solutions de la
premiere sorte."! These orbits can be near either of the finite
masses, but not both. Arenstorf?® proved the existence of
periodic *solutions of the so-called second kind which are near
rotating Keplerian ellipses. Orbits of the first and second
kind exist even if one of the masses becomes massless.

Contrary to this, there are periodic orbits that exist only

in the restricted three body problem proper. In the earth-
moon system such orbits would owe their existence to the
disturbance produced by the moon; however, they degenerate
into orbits of the second kind when the disturbance by the
moon becomes zero. This report presents periodic orbits of
the second kind and orbits that are inherent in the restricted
three body problem proper.

B. BASIC ASSUMPTIONS

A restricted three body model is assumed for the earth,
moon, and probe system. In this system, the earth and moon
revolve in circles in a common plane around their common
center of mass (barycenter). For this investigation, the
probe's motion is restricted to the plane defined by the
earth-moon motion. The equations of motion are normalized
such that the sum of the masses of the earth and moon is
unity, the constant distance between the earth and moon is
unity, and the period of the earth and moon about their
common center of mass ig 2.

A rotating coordinate system (origin at the barycenter)
in which the earth and moon lie on the x-axis is advantageous
because of image properties which occur in the system. 1In
fhis system, under restricted three body assumptions, two
perpendicular crossings of the earth-moon line (x-axis) are
sufficient for periodicity. With this in mind, orbits were
generated by starting on the back side of the moon perpen-
dicular to the earth-moon line. This was an arbitrary choice
of starting conditions, but they proved quite convenient.
With one perpendicular crossing assured, the problem is to
isolate transits which have a second perpendicular crossing
of the earth-moon line. In this study, the velocity magni-
tude at the starting position (first perpendicular crossing)
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was varied in order to perform the isolation. Complete
families were generated by changing the starting position

and repeating the process. Orbits that are retrograde as
they approach the earth are neglected. Future investigations
are planned in this area and should add insight to the
general behavior of periodic orbits.

The ratio of the mass of the earth to the mass of the
moon was assumed to be 80.45,and for the purposes of con-
verting from the unitized system to a physical system, the
distance from the center of the earth to the center of the
moon was taken to be 385,000 km.

C. CLASSIFICATION

The classification of orbit families used in this report
is the same as the system used by Arenstorf® and Davidson¥
Categories such as ratio, order, and class are used in
distinguishing various families of orbits. These terms will
be used extensively; therefore, a brief explanation of each
is in order.

Figures 1 and 2 depict a periodic orbit in a rotating
and a space fixed frame of reference, respectively. One
notices in the space fixed system that the probe makes two
revolutions in its orbit in the same time the moon makes
approximately one revolution in its orbit. The major axis
of the probe's orbit has been rotated slightly due to the
disturbance by the moon; therefore, the period of the orbit
is less than the period of the moon, and the orbit is not
closed in the space fixed frame of reference. However,
closure in the space fixed frame of reference is not neces-
sary for periodicity in the restricted three body problem.
If one lets m equal the number of revolutions the moon
makes while the prote has to make k revolutions in its
orbit before periodicity occurs, then the ratio m/k=% is
used to classify this orbit.

Kepler's third law provides an estimate for a minimum
value of m/k for orbits that encompass both the earth and
moon. In the unitized coordinate system, the period of the
moon 1is given as Py = 2n, and the period of the probe about

the earth is
Pp = 2ﬂ4a3

*Private communication with M. C. Davidson of the Computation
Laboratory, MSFC.



where a 1is the semimajor axis of the probe's orbit. If
the probe's orbit is to contain both masses, then a > 3
Under this assumption, the minimum value of m/k is

3
() .354.

Figure 1 is an orbit of ratio 3 order 1. Orbits with

ratio 2, £, #,... will be referred to as higher order orbits

N

(second, third, fourth ...) of ratio In general, an

orbit with a ratio %% is classified as ratio %% order n.
Figures 3 and 4 show orbits of ratio 3 order 2. In Figure 3
the second perpendicular crossing of the earth-moon line
occurs on the back side of the moon. Orbits with this
characteristic are designated class A, In Figure 4 the
second perpendicular crossing occurs on the front side of
the moon, and orbits of this nature will be referred to as
class B. First order orbits are periodic orbits of the
second kind, but the higher order orbits are orbits of the
restricted three body problem proper.

All orbits presented in this report have at least one
perpendicular crossing on the back side of the moon. There
are orbits which do not possess this characteristic, but
complete data on these orbits arenot avallable at this time.

D. APPLICATIONS

A knowledge of the conditions that exist in earth-moon
space is desirable prior to manned lunar missions. Infor-
mation about meteoroid concentration, radiation belts, and
other useful data could be obtained by a long life (1 year
or more) unmanned spacecraft in an earth-moon periodic orbit.
A desirable periodic orbit would provide adequate mapping
of the region of earth-moon space traversed by an Apollo
type trajectory. Therefore, in choosing an orbit, one should
consider the amount of time spent (coverage) in the desired
region.

In the restricted three body problem, the moon's orbit
is assumed to be circular. In the true physical system the
moon's orbit is near-elliptical, and a velocity budget will
be required for orbit keeping. However, one can, in limted
cases, overcome this perturbation by employing periodic
orbits with periods that are exact multiples of the moon's
period. Orbits of this nature will be closed in both the
rotating and space fixed frame of reference, and will, after
a given period of time, return to their original state.

n




It is seen in Figures 3 and 4 that the close approaches
to the earth usually occur in pairs. For example, in
Figure 3 there are four close approaches to the earth, and
the maximum difference in altitude between the two pairs is
1,240 km. These close approaches provide four chances for
orbit injection.

SECTION III: RESULTS

Famlilies were studied by varying the starting position
behind the moon, and the results are presented with this as
the independent parameter. Closest approach distance to the
center of the earth, the period of the orbit, and per cent
time on the inner leg of the orbit are presented for various
families. The inner leg of an orbit 1s defined as the part
of the orbit that lies closest to the earth-moon line and
extends from perigee at the earth to perisel at the moon
and back to perigee at the earth. The second approach to
the moon and the difference between the maximum and minimum
perigee altitudes (AR) at the earth are presented also.

Data for orbits of ratio 1 order 1 are presented in Figure 5.
Orbits of this family exist for starting positions (perpendic-
ular crossing on the back side of the moon) ranging from the
moon's surface out to a radius of 89,400 km. At radii
slightly greater than 89,400 km, the orbits impact the surface
of the earth,and a further increase in the starting radius
produces retrograde orbits.

Figures 6, 7, and 8 show data for ratio % order 2
class B. These orbits exist for starting radii between
3,075 km and 57,000 km. Collision with the surface of the
earth occurs for starting radil less than 3,075 km and
greater than 57,000 km. It is evident from Figure 7 that
this family contains an orbit with a period of 4n (2 lunar
months ). This indicates that this family contains an orbit
that will be periodic even when the moon's orbit is assumed
to be elliptic.

Depicted in Figures 9, 10, and 11 are data for ratio 1
order 2 class A. Collision with the surface of the earth
occurs with a starting radius of 1,928 km. For this starting
radius, the second perpendicular crossing of the earth-moon
line occurs on the back side of the moon at a distance of
132,000 km. As the starting radius 1is continuously increased,
the second perpendicular crossing moves in toward the moon
until the two crossings coincide. This occurs at about
15,000 km. Transits that are started beyond this radius will
have their second perpendicular crossing between the moon and
the starting position, and they will be duplicates of transits
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that were started from a position inside the 15,000 km 1limit.

Data for orbits of ratio 4 order 3 (an example is shown
in Figure 12) are presented in Figures 13, 14, and 15.
Collision with the earth occurs for starting radii less than
2,310 km. As seen in Figure 12, the second perpendicular
crossing for this family occurs tehind the earth. The second
close approach to the moon takes place after apogee, or
alternatively stated, on the descending leg of the space
fixed orbit. A similar family exists for this ratio and
order in which the second close approach occurs on the
ascending leg of the space fixed orbit. An illustration of
this type of orbit is given in Figure 16; however, complete
data arenot available for analysis of this family.

Figures 18, 19, and 20 show data for orbits of ratio %
order 4 class A. The closest approach to the center of the
earth (11,895 km) occurs for a zero starting altitude at the
moon, s presented in Figure 18, the second approach to the
moon is the close approach that lies on the earth-moon line.

Data for orbits of ratio-% order 1 are given in PFigure 22.
These orbits can be found with starting radii beginning at the
moon's surface and extending out to 183,000 km.

Depicted in Figures 24 and 25 are data for ratio % order
2 class A. Close approach to the earth (93,610 km) occurs
for the smallest possible starting radius at the moon (1,738 km).
Orbits with starting radii greater than 8,900 km will have their
second perpendicular crossing between the starting position and
the moon and will, therefore, be a duplicate of a transit that
was started at this smaller radius.

Figures 27, 28, 29, and 30 show data for orbits of ratio
2 order 2 class B. At a starting radius of 51,000 km, there
exists an orbit with a period of 8n. This family contains two
solutions for the same starting radius for starting radii near
1,994 km and 110,000 km; however, further investigation is
necessary in order to determine the exact area in which these
dual soclutions exist.

Data for orbits of ratio € order 1 are shown in Figures
32 and 33. This family of orbits exists for starting radii
between 7,800 km and 19,800 km. Beyond these limits the
orbits collide with the surface of the earth.




Information for orbits of ratio £ order 1 is given in
Figures 35 and 36. Members of this family were found for
starting radii from 3,187 km to 74,026 km. Two solutions
were found for each starting position, and the alternate
solution (the solution with the highest velocity) is denoted
by an asterisk. Data are given in Figures 38 and 39. The
velocity difference between two orbits from the same radius
varied from 6.4 m/sec to 38.4 m/sec.

Data for orbits of ratio £ order 2 class B are given in
Figures 41, 42, and 43. The closest approach to the earth
occurs for a starting radius of 2,802 km.

Graphs giving velocity as a function of starting position
for the various ratios and orders are shown in Figures 44
through 50.

SECTION IV: CONCLUDING REMARKS
Periodic orbits of ratio 5, 2, &, and S have been
investigated. Higher order orbits of these ratios are being
studied as well as different ratios, and these will be described
in a later paper. To aid in mission planning, Figure 51 shows
a summary of some of the orbits which offer injection altitudes
at the earth of approximately 100 nautical miles.
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FIG. 2. PERIODIC ORBIT RATIO 1/2, ORDER 1,
SPACE-FIXED FRAME OF REFERENCE
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FIG. 17. RATIO 1/2, ORDER 4, CLASS A
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FIG. 40. RATIO 3/5, ORDER 2, CLASS B
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